Air and space travel are for various reasons crucially dependent on their communication capabilities. In air travel, safety and efficiency of air traffic are paramount. In unmanned aircraft, the loss of data links usually leads to an immediate abortion of the mission. Accordingly, new and robust systems are required that are conceived to be completely and multiply redundant. Even satellite components play an important role. Unmanned platforms are both potential means of transport of provisions to poorly accessible regions and means of arranging replacements and additional capacities in disaster zones and large events.
In near-Earth space, satellite communication is subjected to the challenge of increasingly higher speeds of data transfer. These speeds sometimes reach Tbits/s. Optical transmission methods seem to be predestined for creating space-based transmission networks. Transiting the atmosphere has its challenges. Its influences must be sufficiently understood and suitable anti-distortion methods must be developed. With respect to access and distribution, classic high frequency bandwidths will, in the long run, remain most useful because of clouds. This method of transmission will favor digitizing and a certain degree of processing. Promising methods span from beam shaping to network codification.
Space exploration ultimately requires receiving data at enormous distances. Here, too, optical communication is at the center of interest, due to its short wavelength and the correspondingly small transmission aperture. It is essential to achieve transmission efficiencies of several bits per photon. This requires robust synchronization and error-protection procedures.
This outlines the wide scope that will form the framework for research of the individual projects. The intent here is to also contribute to missions on DLR and TUM aircraft, as well as on German and European satellites.