Germany and Europe operate satellites for geodetic observations of the Earth on a wide scale range (100km – 1mm), using various technologies and methods, ranging from gravity field determination by means of new satellite gravimetric processes, to surveying the deformation of individual buildings and infrastructure elements using high-definition interferometric and tomographic radar methods.
With the availability of the newest satellite generation (GOCE on the one hand, and TerraSAR-X and TanDEM-X on the other), the borders between the methods required have become blurred. Interferences of geometric (radar) methods contribute signals to gravimetric missions, and vice-versa. Pure surface deformation is complemented with an estimate of corresponding movements of mass. For example, volcanic deformations or shifts of ice masses can be determined from both gravity field anomalies and radar data, in various spatial and chronological resolutions. At the highest scale of resolution, geodetically measured objects require interpretation. Here, optical photogrammetric methods and their fusion with radar data provide solutions.
The goal of the research project under this key topic is to conceptually unify methods using various scales, apply them to other geodetic problems, thereby discovering new uses and developing new satellite mission concepts. Modeling errors, for example, those caused by the troposphere, by interpretation, by data fusion, and geodetic ground-truth validation are also part of the research.
This major research topic will flank the pertinent current and future German and European satellite missions with a solid research program. The results will be applicable to climate and solid Earth physics, predicting natural hazards, urban risk management, and urban planning.